Receptor muy simple para radiodifusión en Amplitud Modulada (AM)

(Very simple and fun AM radio receiver)

Este receptor de radio AM en Onda Media para mí es muy especial. Lo construí cuando era profesor auxiliar de electrónica en mi querida Universidad de Chile, por el año 2008, donde enseñaba fundamentos de electrónica analógica. Era la época en que hacía la cátedra el respetado profesor don Nicolás Beltrán Maturana, quien tenía especial dedicación por hacer buena enseñanza de ingeniería en Chile. Recuerdo lo mucho que valoraba el emprendimiento tecnológico, quizás con la esperanza que algún día los latinoamericanos aprenderemos que es necesario basar nuestra economía en I+D y no en la sobre-explotación de recursos naturales. Con esta publicación rindo homenaje a su persona.

Volviendo a la electrónica… en la Fig. 1 podemos ver el esquemático completo de nuestro receptor AM rústico. A continuación, se menciona cada una de las etapas que lo componen.

Fig. 1 Circuito completo del Receptor AM.

Amplificador de Radiofrecuencia (RF) Sintonizado: se encarga de incrementar la tensión de la señal portadora RF  en forma selectiva, por lo cual posee un circuito resonante LC paralelo (conformado por el inductor L1 y el capacitor variable C1) que define la frecuencia a la cual el amplificador de RF posee máxima ganancia. Variando C1 podemos sintonizar la frecuencia de la radioemisora que deseamos escuchar. L1 tiene una derivación intermedia desde donde enviamos la tensión RF hacia el transistor amplificador, gracias a lo cual tenemos un factor de calidad elevado en el circuito resonante, mejorando su selectividad.

Detector de Envolvente: es una red conformada por diodos, cuya misión es rectificar en media onda, y un filtro pasa bajos de tipo RC. Su función es demodular la portadora AM, de modo que a la salida obtenemos el audio que contiene la señal proveniente del amplificador sintonizado.

Amplificador de Audio: se compone de 3 etapas: amplificadores de voltaje tipo emisor-común (Amp. Audio 1 y Amp. Audio 2, según se muestra en Fig. 1) y amplificador de corriente en contrafase o push-pull (Amp. Audio 3), colector-común. Las dos primeras etapas poseen alta impedancia de salida, lo que reduce la ganancia en corriente y hace necesaria la implementación de una etapa con alta impedancia de entrada y baja impedancia de salida, como el amplificador push-pull. Está diseñado para operar con un parlante que soporte por lo menos 1 vatio y cuya resistencia interna esté entre 4 y 8 ohmios.

Fig. 2 Vista general de este simple receptor AM.

Si quieres construir este receptor AM de Onda Media, te recomiendo hacerlo sobre una lámina de melamina blanca donde previamente tengas dibujado el esquemático a una escala adecuada como para disponer el hardware sobre dicho esquemático. En un principio lo pensé de esa forma, pero por tiempo me limité a sólo señalar las etapas y no las componentes. Lo ideal es marcar ambos.

El formato de construcción y parte del circuito los obtuve de una vieja revista de radioafición colombiana… me parece que se llama (o llamaba) Cekit. En Fig. 2 tenemos una vista general de este aparato.

Saludos desde Chile,

Emerson
CD3EMT

Inversor trifásico con DSP TMS320F28335, IGBTs IRG4PC30UD y driver IR2104. Trabajo en contexto académico.

(Three phase power inverter, with TMS320F28335 and IGBTs – academic work)

En el contexto de un curso de magíster,  con mi compañero Waldo Monsálvez implementamos un inversor trifásico para energizar una máquina de inducción. Waldo se encargó del trabajo con Matlab y su conexión al F28335, y yo de diseñar y construir todo el hardware. La idea era implementar un control Voltaje/Frecuencia en base a un VSI (inversor fuente de voltaje), con lazo de control para el voltaje. Y lo logramos. En el siguiente video podemos ver este setup en acción.

Es importante mencionar que lo hicimos con lo que teníamos a mano… y no me quedaban disipadores térmicos para los IGBTs ni LDO’s; pero afortunadamente nuestro requerimiento de corriente en la carga es bajo (la máquina de inducción está en vacío), así que no tenemos problemas de calentamiento. Espero conseguir una placa de aluminio y aisladores para tener el setup al 100%.

¿Por qué relación voltaje/frecuencia constante en nuestro motor de inducción?

En máquina de inducción es necesario reducir la tensión de alimentación (respecto de la nominal) cuando la frecuencia de la corriente alterna aplicada es inferior a la nominal, puesto que de no hacerse así, es posible que se sature el hierro del motor, incrementando la corriente de magnetización de la máquina. Por ello, cuanto más baja sea la frecuencia de la corriente AC, menor debe ser la tensión aplicada al motor.

¿Cómo funciona nuestro inversor?

Se trata de un inversor trifásico fuente de voltaje (VSI), implementado de acuerdo al diagrama mostrado en la Fig. 1. Podemos ver el esquema de control, donde se ingresa – desde un PC externo – como referencia la frecuencia de la corriente alterna trifásica que se aplicará a la máquina. Internamente, se define el voltaje fase – fase referencia con un valor proporcional a la frecuencia ingresada (en nuestro caso, esta razón voltaje/frecuencia = 1, donde el voltaje se expresa en [V] y la frecuencia en [Hz]). A través de un operador PI (proporcional – integral) se construye un lazo de control para el voltaje.

Fig. 1 Inversor fuente de voltaje (VSI), control voltaje – frecuencia con lazo abierto de velocidad y control PI de voltaje. Créditos de esta figura a Waldo.

La implementación se hace de acuerdo al diagrama de bloques de la Fig. 2.

Fig. 2 Diagrama de bloques con el hardware del VSI implementado. En gris, bloques para construir a futuro.

Consta de las siguientes componentes, totalmente funcionales:

    • Tarjeta de desarrollo para DSP de Texas Instruments TMS320F28335. A través de interfaz USB, mantiene comunicación con un computador externo.
    • Puente inversor trifásico en base a IGBT IRG4PC30UD, dos por cada fase (x6).
    • Circuito driver basado en IR2104, uno por cada fase (x3).
    • Circuito acondicionador de señal, que recibe hasta 80[Vpp] conmutados a 10[kHz], y entrega a su salida una señal alterna con valor medio 1.5[Vdc] y amplitud máxima 3[Vpp]. Se basa en amplificadores operacionales TL074, cuenta con filtro pasa bajos de 1 polo a 500[Hz] y aislación galvánica a través de transformadores.

En la Fig. 2 se considera además otras unidades funcionales, las que se proponen como trabajo futuro. Estas son:

    • Circuito conversor Digital – Análogo (DAC) con comunicación SPI para visualización de señales internas del DSP en osciloscopio, basado en MCP4822.
    • Encoder óptico que entrega 2 pulsos por giro de la máquina de inducción, para medición de velocidad angular a través de señales de interrupción en DSP. Se propone utilizar el módulo KY-033 para Arduino, en forma similar a como se hizo en Taller 2.

En Fig. 3 podemos ver la electrónica.

Fig. 3 Electrónica de nuestro setup, montada sobre un trozo de melamina (construcción clásica que uso desde mi época de pregrado).

A continuación una breve descripción de cada parte del hardware.

El DSP de control…

Utilizamos la plataforma de desarrollo de Texas Instruments, basada en el DSP TMS320F28335, modelo TMDSDOCK28335 (para más info, ver este link en la web de Texas Instruments).

Fig. 4 Tarjeta de desarrollo TMDSDOCK28335 de Texas Instruments.

Respecto del DSP, los pines utilizados son los siguientes:

Función Pin tarjeta DSP
PWM Fase A 00
PWM Fase B 02
PWM Fase C 04
Voltaje A-B A0
Voltaje B-C A1

Tabla 1. Pines de conexión del DSP hacia etapa de potencia y medición de voltajes.

La  programación se hizo con el software Code Composer Studio de Texas Instruments y Matlab, a través del cual se refrescaban parámetros que facilitaron la sintonía del control PI. Además, por esta vía se ingresaba la frecuencia de referencia.  Si deseas más detalles en la forma que programamos el DSP, no dudes en escribir.

Etapa de potencia y drivers…

La etapa de potencia se basa en los IGBT´s IRG4PC30UD, y como driver para estos dispositivos ocupamos los IR2104 (uno por cada fase del inversor, dado que entrega salidas complementarias y galvánicamente aisladas, que consideran tiempos de retardo para evitar cross-conduction).

En la Fig. 5 se muestra esquemático con etapa de potencia y drivers, las que en el montaje se han dispuesto en forma separada. Esto es posible puesto que la frecuencia de conmutación PWM es bastante baja (s´olo 10kHz) por lo que no hay inconvenientes con inductancias y capacitancias par´asitas del circuito.
De acuerdo a indicaciones del fabricante de los IR2104, la tensión DC máxima del bus de potencia es +600 Vdc. En nuestro caso, por seguridad y dado que se adapta a las tolerancias de tensión de nuestro circuito de acondicionamiento de señal y entrada del ADC, trabajaremos sólo con +40Vdc.

Fig. 5 Drivers y etapa de potencia.

Y el acondicionador de señales para los ADC (muestra de voltajes fase-fase)…

En la Fig. 6 se muestra el circuito de acondicionamiento de señal, que permite adaptar la tensión alterna y conmutada de los voltajes fase – fase vab y vbc, con valor medio 0, a la entrada de conversores análogo – digital del DSP, cuyo rango de operación es 0 a 3 V. Para ello, el circuito de la Fig. 3 realiza las siguientes operaciones:

    • A través de transformadores cuya relación de transformación es 220/12 Vac, se obtiene aislación galvánica entre la tensión trifásica de salida y la etapa de medición, se reduce la tensión por un factor 1/18; y también se filtra parcialmente la componente de alta frecuencia de salida (10kHz y armónicas de esta frecuencia).
    • Se reduce la tensión en 1/3, a través de un divisor de tensión resistivo.
    • A través de amplificadores operacionales y una red RC, cuyo polo se ubica a una frecuencia de 1kHz, se filtra la componente de alta frecuencia (10kHz y sus armónicas). La salida del circuito acondicionador de señal es de baja impedancia.
    • El circuito con amplificadores operacionales también suma la tensión de 1.61Vdc (medido, idealmente 1.5Vdc) a la tensión alterna de salida, permitiendo que semiciclos positivos y negativos estén dentro del rango de tolerancia del ADC. El valor medio utilizado fue 1.61V – medido en el divisor de tensión formado por R7 y R8 – (este valor se usa para calibrar el software).
    • Finalmente, un diodo Zener 1N4728 elimina sobretensiones que pudieran dañar las entradas analógicas del DSP.
Fig. 6 Circuito acondicionador de señal. Recibe voltajes Fase-Fase 80Vpp, y a la salida 0 a 3V, con 1.61V valor medio. Filtra componentes de alta frecuencia PWM (10 kHz y armónicas).

Y para cerrar este artículo de mi blog, una vista general del setup. Hay mucho más trabajo del que se ve a simple vista – especialmente en el lazo de realimentación de voltaje -, pero espero que con este artículo se les haga más fácil a quienes necesiten implementarlo  a futuro.

Fig. 7 Setup implementado con nuestro inversor trifásico.

Mis agradecimientos a Duberney Murillo (LARI) por sus valiosos consejos y por facilitarnos un espacio de trabajo.

Saludos y buena semana,

Emerson

Antena multibanda para HF, bandas de 40, 20 y 11/10 metros.

(HF End Fed Half Wave multiband antenna, for 40, 20 and 11/10 meter band).

Buscando una alternativa fácil de instalar, simple y menos aparatosa para implementar una antena multibanda capaz de operar en las bandas de 40, 20 y 11/10 metros, llegué a la famosa antena de media onda alimentada en un extremo. A través de E-bay adquirí una versión comercializada por Par Electronics, la EF-10/20/40 MKII, con la que comprobé efectividad y bajo ruido de este tipo de antenas cuando operan en forma horizontal.

Si deseas conocer en detalle esta antena, te recomiendo visitar el excelente sitio web de Steve Yates AA5TB (www.AA5TB.com). Por mi parte, haré sólo una breve descripción teórica, pues me enfocaré en la construcción de esta EFHW para 10/11, 20 y 40 metros, y en mostrar los resultados obtenidos. Los detalles constructivos están basados en el artículo publicado por PA3HHO (https://pa3hho.wordpress.com/end-fed-antennes/multiany-band-end-fed-english/). Mi idea es reproducir este trabajo y contar mi experiencia. En caso de surgir alguna mejora posible, también la comentaré.

¿En qué consiste la antena EFHW (Antena Multibanda de Media Onda Alimentada en un Extremo)?

Es un dipolo de media onda, pero en vez de conectarse la línea de bajada en el centro, se conecta en un extremo (ver Fig. 1). A mi parecer, la gran gracia de esta antena es que podemos utilizar el mismo hilo radiante para varias bandas de frecuencias armónicas, puesto que un hilo conductor de media onda a la frecuencia F, resonará en onda completa completa a 2*F, y en 3/2 de onda a 3*F, y así sucesivamente, siendo el punto de alimentación (en un extremo) siempre de impedancia muy elevada. Por ello, podemos construir antenas mutibanda utilizando un único hilo radiante, lo que hace más facil su instalación y uso como antena portable (por ejemplo, en salidas a acampar).

Al alimentarse en un extremo, como se mencionó anteriormente, la impedancia en el punto de alimentación es altísima (de 2000 a 3000 Ohmios), y por lo mismo requiere un adaptador de impedancias si se quiere conectar a la línea de 50 Ohmios. Típicamente, se usa un transformador de banda ancha con núcleo de ferrita toroidal o binocular, como veremos más adelante.

Fig.1. Comparación entre dipolo de media onda alimentado en el centro, y dipolo alimentado en un extremo. En amarillo, forma aproximada de distribución de la corriente. Notar que es máxima en el centro, lo que explica el hecho que también la impedancia es mínima; mientras que el el extremo la corriente es mínima (y máximo el voltaje), definiendo una alta impedancia.

Si se tiene una alta impedancia en el punto de alimentación, observaremos que la tensión de RF durante TX se eleva a varios kV si utilizamos potencia considerable, lo que hace críticas las características constructivas del módulo adaptador de impedancia. Por otro lado, habitualmente se ocupa el recubrimiento exterior (malla) del cable coaxial de bajada de antena como contrapeso (o contra-antena), lo que hace que este se comporte como parte del sistema radiante y por lo mismo se generan corrientes en modo común que eventualmente pueden afectar el rendimiento de la antena y la captación de ruido. Estas corrientes de modo común se pueden reducir drásticamente mediante el uso de un filtro de modo común (o balún de corriente, o choque de RF), el que debe ser instalado previo al ingreso de la línea coaxial al cuarto de radio. Así evitaremos meter RF en nuestros equipos cuando estemos en TX, y a la vez reduciremos la captación de ruido por parte de la línea coaxial en RX.

Para la adaptación de impedancias, la razón de transformación más utilizada es 1:8, donde en el lado de baja impedancia tenemos la línea de 50 Ohmios y en el lado de alta se coloca el hilo radiante de longitud eléctrica equivalente a media longitud de onda de la señal radiada (o recibida). Con esta razón de transformación tenemos mayor independencia de la R.O.E. (SWR) respecto del largo de la contra-antena (o contrapeso de la antena), siempre y cuando este sea superior al 10% de la longitud de onda de operación de la antena (ver sitio de AA5TB). Por lo mismo, si se trata de antenas multibanda, podemos escoger una longitud de contra-antena entre el 10% y 50% de la correspondiente a la frecuencia más baja de operación (en nuestro caso, banda de 40 metros).

Construyamos nuestra EFHW.

El diseño para las bandas de 40, 20 y 10 metros es el mostrado en la siguiente figura:

Fig.2. Esquema eléctrico de una antena EFHW de 3 bandas. N = 2 y M = 16, sobre núcleo toroidal de ferrita T130-43. C = 150 pF/ 500V cerámico. Se utiliza el cable coaxial de bajada como contra-antena.

En 40 metros, el hilo se comporta como un brazo de media longitud de onda, recortado gracias a la presencia del inductor L, en nuestro caso de 34 uH. De este modo, logramos acortar el largo total de la antena, o sea D1 + D2 es menor que media longitud de onda en 40 metros, lo que a su vez reduce el ancho de banda y rendimiento en 40 metros.

Para las bandas de 20 y 10 metros, el inductor L se comporta como un choque de RF, es decir, como una impedancia tan elevada que prácticamente no permite el paso de corriente de RF hacia el tramo final de la antena (D2). De este modo, para 20 y 10 metros el largo total de la antena es D1, donde en el caso de 20 metros corresponde a media longitud de onda, mientras que en 10 metros a una longitud de onda completa, donde ambas maximizan su impedancia en el extremo. 

Fig. 3 Antena EFHW para las bandas de 40, 20 y 10/11 metros.
Fig. 4 Adaptador de impedancias antena EFHW para 40, 20 y 10 metros.

El transformador se ha hecho en base al toroide T-130-43, formado por 2 espiras bifilares + 14 espiras, con hilo de cobre esmaltado tipo 18 AWG. El secundario lo he enrollado en partes opuestas del toroide, con el objetivo de reducir capacitancias parásitas entre ambos extremos del bobinado. El toroide está recubierto de cinta dieléctrica para proteger la aislación del hilo que conforma el adaptador de impedancias, lo que no significa un problema pues en QRP no tendremos calentamiento del núcleo toroidal.

Para acortar la longitud de la antena de 40 metros, y también para aislar el último tramo de la antena (D2) en la operación de las bandas de 20 y 10 metros, se utiliza un inductor de L = 34 uH. Consiste en 65 vueltas de hilo 18 AWG sobre una tubo de PVC de 1 pulgada de diámetro.

Con el objetivo de obtener una satisfactoria operación del adaptador de impedancias en la banda de 10 metros, he colocado un capacitor de 150 pF en paralelo con el lado de baja impedancia del transformador (probando desde 50pF hasta 200pF, es el que mejor resultado ha dado). Debe soportar por lo menos 500V, como es en este caso, lo que es suficiente para operar equipos con potencias QRP (5W P.E.P o inferior).

Luego de varias pruebas, las longitudes óptimas para D1 y D2 son:

D1 = 10.1 [m]

D2 = 1.6 [m]

Ajustadas a mi instalación en particular. Dependiendo del valor exacto de la inductancia, de la disposición del hilo radiante (horizontal, vertical o «v» invertida), del entorno (influencia de estructuras conductoras cercanas), tipo de suelo, trazado de la línea de bajada y postura de balún para filtrar corrientes en modo común, estas longitudes pueden variar.  

Ensayos preliminares me han mostrado resultados interesantes… QSOs en la banda de 40 metros a más de 500 km de distancia, y en 10 metros a más de 2.000 km!, con sólo 5 W p.e.p. Una maravilla. Es ideal para salidas a terreno, pues su instalación es muy sencilla.

Este artículo está en proceso de desarrollo… pronto más información!!