Antena T2FD para HF (1.8 a 30 MHz) para espacios reducidos

(Short tilted terminated folded dipole antenna T2FD for HF band)

Establecerse en la ciudad conlleva casi necesariamente la imposibilidad de instalar buenas antenas para las bandas bajas, y a veces no queda más alternativa que buscar una antena de reducido tamaño que nos permita operar – aunque sea con baja eficiencia – en estas bandas. Es así como decidí construir una antena T2FD (tilted terminated folded dipole, lo que sin traducir textualmente significa dipolo plegado terminado en carga lineal), la cual tiene la particularidad de presentar una relación de onda estacionaria adecuada en un amplio ancho de banda (hay modelos con ROE < 2.0 en toda la banda de HF, y <3 incluso hasta 50 MHz), lo que la hace muy adecuada para equipos que operan en múltiples bandas. Sin embargo, su eficiencia no es tan elevada como un dipolo u otro tipo de antena resonante. Es una antena muy utilizada en comunicaciones HF profesionales y para receptores de onda media y onda corta, siendo una excelente alternativa para receptores SDR multibanda.

En lo que sigue, construiré una en base a lo expuesto en el sitio web http://www.packetradio.com/, con un balún de diseño propio.

Figura 1: antena T2FD corta montada sobre segmento de torre a 6 metros, en forma de «V invertida».

Se trata de una antena de tipo «onda viajera no resonante», cuyo diseño conceptual tenemos en la Fig. 2. Destaca su pequeña longitud para ser de HF (sólo 12 metros lineales), lo que hace sencillo adaptar su instalación a espacios reducidos, como patios en zonas urbanas, sobre techumbres o al interior de áticos de madera con techo dieléctrico. El diseño está pensando para utilizarse en toda la banda de HF (160 a 10 metros) en comunicaciones de banda lateral única (SSB) con un máximo de 50 W P.E.P., aunque se espera que la eficiencia de esta será alta sólo en las bandas cuya longitud de onda sea inferior a unos 24 metros. Si se desea incrementar su eficiencia en las bandas bajas, es necesario extender el largo L (ver Fig. 2.a) a lo menos 0,4 veces la longitud de onda de la banda de frecuencias más baja a utilizar.

Esta antena posee un loop radiante con 6 metros de longitud por lado (en total 12 metros), con un ancho de 0,43 metros. Es alimentada a través de un BalUn cuya relación de transformación de impedancias es 450:50 Ohmios, siendo el lado de alta impedancia el que alimenta el loop balanceado y el otro extremo el que se conecta a la línea coaxial de bajada de 50 Ohmios desbalanceada. Al otro extremo del loop, se ubica la carga resistiva de 450 Ohmios, cuya capacidad de disipación de potencia es de 75 W.

Figura 2: detalles constructivos antena T2FD corta 1,8 – 30 MHz.

Como lo indiqué al principio de este artículo, la relación de onda estacionaria medida en esta antena para la banda de HF es aceptable en todo el rango (menor a 1:3), tal como lo vemos en la Fig. 3. Sin embargo, esto no es garantía de un alto desempeño pues, dependiendo de la frecuencia en que se esté operando, parte de la potencia de transmisión (o recepción) se disipa en forma de calor en la carga resistiva y no es aprovechada para el contacto radial.

Figura 3: relación de onda estacionaria de esta antena T2FD corta, medida con el analizador de antenas MFJ-269C.

El balún se construye en torno a un toroide FT140-43, con 4 espiras en el lado de 50 Ohmios y 12 en el lado de 450 Ohmios. El centro del lado de alta impedancia está conectado a tierra, quedando este punto común entre ambos devanados y conectado a la malla exterior de la bajada coaxial. Primario y secundario se enrollan trenzados (o retorcidos entre sí). En la Fig. 4 podemos ver el detalle de este transformador adaptador de impedancias.

Figura 4: construcción del balun 9:1.

La cantidad de espiras por devanado las calculé pensando en lograr un adecuado equilibrio entre lo que significa reducir las corrientes de magnetización en las bandas bajas y también minimizar el efecto de las reactancias de fuga en la parte alta de la banda de HF. Estas reactancias serie las compensaremos parcialmente con el capacitor de 100 pF en paralelo que puse en el lado de 50 Ohmios, lo que mejorará el comportamiento del balún en la parte de alta de la banda de HF, pero acotará el ancho de banda del balún hasta pocos MHz por sobre la banda de HF. Aprovechando material remanente de otros proyectos y luego de algo de ensayo – error, llegué a este valor del capacitor (que podemos ver en la Fig. 5).

Es importante mencionar que el balún es de voltaje puesto que conecté el punto medio del lado de alta impedacia (balanceado) a tierra (GND), para así dejar aterrizado el loop. Esto es para evitar arcos eléctricos y consecuentes daños en receptores por estática, especialmente durante eventos atmosféricos o cuando el aire está muy seco. Si la antena no está perfectamente balanceada en su montaje, será necesario incluir un choque de RF para evitar corrientes de modo común por desbalances, lo que se resuelve fácilmente enrollando unas 16 espiras de coaxial RG-58 en un toroide FT240-43 justo luego del punto de conexión entre la línea y el balún de la T2FD.

Figura 5: balun 9:1 con capacitor 100pF paralelo en lado de 50 Ohmios.

Respecto de la resistencia, es muy importante que sea resistiva (pura) a la frecuencia de operación (especialmente a las frecuencias más altas, en torno a 30 MHz, pues allí se incrementa el efecto de las reactancias). Esto se logra en forma aceptable con 15 resistencias de hilo bobinado en paralelo (que tienen componente inductiva, pero al estar en paralelo reducen su magnitud total), de 6,8 kOhmios y una capacidad de disipación 5 Watts cada una. Este diseño lo obtuve de un video mostrado por XQ2CG (gracias Sergio), donde analiza esta resistencia de una reconocida marca comercial.

Figura 6: carga resistiva 450 Ohmios.

Tanto el balún como la resistencia de carga las monté al interior de un tubo de PVC hidráulico de 50 mm de diámetro, sellados con tapas de PVC pero con aberturas en la parte inferior para evaluación de humedad. Las componentes internas las fijé con sellador de poliuretano (Sikaflex 221, gracias Manfred XQ6FOD por el dato… pero ojo que es un compuesto muy tóxico… úsese tomando todas las precauciones del caso), procurando cubrir las partes sensibles a la oxidación y dejando la mayor superficie disipadora posible en las resistencias de carga y toroide de ferrita, con el objetivo que puedan disipar calor al ambiente.

Y finalmente, para el loop utilicé conductor de tipo eléctrico superflex de 2,5 mm2, con separadores construidos de conduit eléctrico de PVC 16 mm, en segmentos de 50 cm de largo cada 2 metros. La fijación del conductor a los separadores está hecha con amarras plásticas para cables, reforzada con pegamento para darle más durabilidad a la intemperie. La unión de ambos brazos, balún y resistencia de carga la hice en un trozo de tubo de PVC hidráulico de 50 mm de diámetro, habilitando en este tubo un agujero para pasar un alambre que permite la instalación en el soporte central (en este caso, la torre). Obtuve una antena robusta, aunque no muy liviana.

Figura 7: brazos del loop de esta antena t2fd corta en proceso de construcción.

Comentando en términos generales, esta antena me ha sorprendido gratamente. En recepción es bastante silenciosa (presenta un bajo nivel de ruido en comparación a otras antenas que he probado) y sirve en RX para todo el espectro de onda media y onda corta. He disfrutado la recepción de todas las bandas con bajo ruido… incluso en la banda AM de onda media… una maravilla. Tengo la idea que en una instalación más adecuada (horizontal y a mayor altura) debe ser aún mejor. En la medida que la vaya probando les comentaré, especialmente lo relativo al rendimiento en TX en las bandas bajas, que es donde debería ser menos eficiente.

73´s

Emerson
CA4EMT

Antena multibanda para 80, 40, 20 y 10 metros, tipo EFHW.

Motivado por las ganas de implementar una antena de fácil instalación (aspecto crítico a considerar en zona urbana, con un patio no lo suficientemente grande como para una antena «bigote de gato» capaz de operar en 10/20/40 y 80 metros, y también habiendo desechado la idea de comprar alguna de las costosas e ineficientes antenas comerciales para espacios reducidos – esas verticales no resonantes -) decidí probar una antena de media onda alimentada en un extremo (End Fed Half Wave), tal como lo hice hace un par de años atrás con la antena EFHW para 40, 20 y 10 metros QRP, acomodando el trazado del hilo a la forma del patio. Si bien no espero que sea muy eficiente, debido al uso de un transformador adaptador de impedancias con elevada relación de transformación sobre ferrita de considerables pérdidas en HF (aunque he leído versiones optimistas que hablan de un 85% de eficiencia o más en las bandas entre los 80 y 10 metros), al menos es una opción que permite salir en HF a costo razonable y con resultados aceptables (según varios autores). No me preocupa demasiado la eficiencia, pero si me interesa que tolere los 100Wpep de mi transceptor multibanda y que la R.O.E. se mantenga a niveles razonables.

Antes de continuar, un poco de teoría de funcionamiento de la antena de media onda alimentada en un extremo (o End Fed Half Wave EFHW). Si ya leíste el artículo de mi antena QRP 40/20/10 metros, te sugiero saltes esta parte de la publicación de modo de ir directamente a la implementación de esta nueva versión.

Un poco de teoría… ¿En qué consiste la antena EFHW (Antena Multibanda de Media Onda Alimentada en un Extremo)?

Es un dipolo de media onda, pero en vez de conectarse la línea de bajada en el centro, se conecta en un extremo (ver Fig. 2). La gran gracia de esta antena es que podemos utilizar el mismo hilo radiante para varias bandas de frecuencias armónicas, puesto que un hilo conductor de media onda a la frecuencia F, resonará en onda completa completa a 2*F, y en 3/2 de onda a 3*F, y así sucesivamente, siendo el punto de alimentación (en un extremo) de impedancia muy elevada en todas estas frecuencias. Por ello, podemos construir antenas multibanda utilizando un único hilo radiante, lo que hace más fácil su instalación. Además, tiene menor impacto estético en zonas urbanas que la clásica «bigote de gato» o los dipolos rígidos multibanda, y lo simple de su instalación la hace ideal como antena portable (por ejemplo, para ocupar en salidas a acampar).

Al alimentarse en un extremo, como se mencionó anteriormente, la impedancia en el punto de alimentación es altísima (de 2000 a 3000 Ohmios, dependiendo del entorno y características del hilo radiante), y por lo mismo requiere un adaptador de impedancias si se quiere conectar a la línea de 50 Ohmios. Típicamente, se usa un transformador de banda ancha con núcleo de ferrita toroidal o binocular, como veremos más adelante.

Figura 2: comparación entre dipolo de media onda alimentado en el centro, y dipolo alimentado en un extremo. En amarillo, forma aproximada de distribución de la corriente. Notar que es máxima en el centro, lo que explica el hecho que también la impedancia es mínima; mientras que el el extremo la corriente es mínima (y máximo el voltaje), definiendo una alta impedancia.

Si se tiene una alta impedancia en el punto de alimentación, observaremos que la tensión de RF durante TX se eleva a varios kV si utilizamos potencia considerable, lo que hace críticas las características constructivas del módulo adaptador de impedancia. Por otro lado, habitualmente se ocupa el recubrimiento exterior (malla) del cable coaxial de bajada de antena como contrapeso (o contra-antena), lo que hace que este se comporte como parte del sistema radiante y por lo mismo se generan corrientes en modo común que eventualmente pueden afectar el rendimiento de la antena y la captación de ruido. Estas corrientes de modo común se pueden reducir drásticamente mediante el uso de un filtro de modo común (o balún de corriente, o choque de RF), el que debe ser instalado previo al ingreso de la línea coaxial al cuarto de radio. Así evitaremos introducir RF en nuestros equipos cuando estemos en TX, y a la vez reduciremos la captación de ruido por parte de la línea coaxial en RX.

Teóricamente, la razón de transformación de impedancias que proporciona mejores resultados es 64:1, donde en el lado de baja impedancia tenemos la línea de 50 Ohmios y en el lado de alta se coloca el hilo radiante de longitud eléctrica equivalente a media longitud de onda de la señal radiada (o recibida) o sus múltiplos. Con esta razón de transformación tenemos mayor independencia de la R.O.E. (SWR) respecto del largo de la contra-antena (o contrapeso de la antena), siempre y cuando este sea superior al 10% de la longitud de onda de la frecuencia operación (ver sitio de Steve Yates AA5TB.com). Por lo mismo, si se trata de antenas multibanda, podemos escoger una longitud de contra-antena entre el 10% y 50% de la correspondiente a la frecuencia más baja de operación (en nuestro caso, banda de 80 metros).

En este artículo ocuparemos la relación de transformación 49:1, puesto que según varios autores presenta mejor desempeño (menor R.O.E. y eficiencia). Probablemente, la explicación esté en que, en la práctica, la impedancia del hilo radiante de media onda no es tan elevada (debido a que el hilo no es infinitamente delgado y usualmente se encuentra a baja altura respecto del suelo) y con adaptadores de impedancia con relación de transformación menores esperaremos menores pérdidas. Esto último puesto que tendremos menor reactancia parásita serie por flujos magnéticos de fuga.

Construyamos nuestra antena EFHW para 80/40/20 y 10 metros. Aspectos generales.

El diseño para las bandas de 80, 40, 20 y 10 metros es el mostrado en la Fig. 3:

Figura 3: esquema eléctrico de una antena EFHW de 4 bandas. N = 2 y M = 14, sobre 2 núcleos toroidales de ferrita FT240-43 apilados. El capacitor está conformado por 4 capacitores mica-plata de 430 pF 1 kV conectados en serie.

En 80 metros, el hilo se comporta como un brazo de media longitud de onda, recortado gracias a la presencia del inductor L, en nuestro caso de 110 uH. De este modo, logramos acortar el largo total de la antena, o sea D1 + D2 es menor que media longitud de onda en 80 metros, lo que a su vez reduce el ancho de banda y rendimiento en 80 metros, pero hace posible su instalación en «espacios reducidos» (en realidad, «menos grandes»).  El largo total quedará en unos 23 metros aproximadamente. Esta técnica es utilizada por Steve Nichols G0KYA (http://g0kya.blogspot.com/).

Para las bandas de 40, 20 y 10 metros, el inductor L se comporta como un choque de RF, es decir, como una impedancia tan elevada que prácticamente no permite el paso de corriente de RF hacia el tramo final de la antena (D2). De este modo, para 40, 20 y 10 metros el largo total de la antena es D1 (20 metros aprox.), donde en el caso de 40 metros corresponde a media longitud de onda, mientras que en 20 metros a una longitud de onda completa,  y para 10 metros es de dos longitudes de onda. Como vimos anteriormente, en todas estas bandas la impedancia en el punto de alimentación (extremo del conductor) es muy elevada, considerando que se utiliza como contra-antena una conexión a tierra y/o la malla exterior del cable coaxial (la que recordemos debe tener una longitud igual o mayor al 10% o 20% de la longitud de onda más larga a la cual operará la antena).

Las longitudes exactas se determinarán en forma práctica, pues son condicionadas por el entorno de la instalación. Eso lo veremos mas adelante.

El Adaptador de Impedancias 49:1

El adaptador de impedancias consiste en un transformador de tipo toroidal, con relación de vueltas entre primario y secundario de 2:14. Se utilizan 2 toroides FT-240-43 (de Fair-Rite, http://toroids.info/FT240-43.php) apilados, pegados entre sí por pegamento extra fuerte (la gotita, como se conoce en Chile), reforzado por tiras plásticas. Los devanados se hacen de alambre de cobre esmaltado 14 AWG, estando el primario (de 2 vueltas) trenzado sobre el secundario. Por otro lado, el secundario cruza al otro lado del toroide en la vuelta número 8, para completar luego las 14 vueltas. Lo ideal es que el espacio entre el alambre conductor y núcleo toroidal sea lo más pequeño posible, para así reducir flujos magnéticos de fuga, lo que no es tarea fácil por el grosor del alambre. No se debe utilizar alambres muy delgados, ya que por efecto pelicular en alta frecuencia incrementan demasiado su resistencia y, por ende, las pérdidas. Tampoco se debe cubrir el núcleo toroidal con cinta aislante si se quiere ocupar la antena con potencias importantes (unos 50 W o más), puesto que necesitamos que el núcleo sea capaz de disipar la potencia perdida en forma de calor. Es crítico que no sobrepase la temperatura de Curie (unos 130°C para el material tipo 43) pues, de suceder aquello, el material ferromagnético cambia sus propiedades magnéticas en forma permanente.

Para el capacitor de 100 pF, utilicé 4 condensadores mica-plata (ideales para altas frecuencias) de 430 pF conectados en serie, cada uno capaz de soportar una tensión de 1 kV. El montaje lo hice en una caja plástica estanca, de estas para derivaciones eléctricas sobrepuestas. En Chile, recomiendo las cajas marca SAIME serie 2000 (este modelo es el producto SAIME 2011, IP 55). Las utilizo a menudo en mis proyectos.

En las figuras siguientes podemos ver detalles constructivos:

Figura 4: vista general del adaptador de impedancias 49:1, implementado con 2 núcleos toroidales FT-240-43.
Figura 5: detalle de los devanados del transformador.

Ahora vienen las pruebas del adaptador de impedancias (medición de R.O.E. ante carga resistiva pura de 2450 Ohmios y medición de eficiencia), la construcción de la bobina de carga de 110 uH e instalación del hilo radiante para pruebas reales. Habrá que esperar un poco para ello.

En la medida que vaya avanzando con este proyecto, iré actualizando el texto de esta publicación. Quizás tarde, pues tampoco tengo espacio para esta antena (en respuesta a los correos que me han llegado consultando), pero espero probarla con 2 bobinas de carga (para 40 y 80 metros), reduciendo al largo total a unos 15 metros.
Bueno… ya les comentaré qué tal anda, aunque por mi experiencia en la versión QRP, supongo que muy bien.

Muchos saludos desde el Maule, Chile.

Emerson
CD4EMT

Antena multibanda para HF, bandas de 40, 20 y 11/10 metros.

(HF End Fed Half Wave multiband antenna, for 40, 20 and 11/10 meter band).

Buscando una alternativa fácil de instalar, simple y menos aparatosa para implementar una antena multibanda capaz de operar en las bandas de 40, 20 y 11/10 metros, llegué a la famosa antena de media onda alimentada en un extremo. A través de E-bay adquirí una versión comercializada por Par Electronics, la EF-10/20/40 MKII, con la que comprobé efectividad y bajo ruido de este tipo de antenas cuando operan en forma horizontal.

Si deseas conocer en detalle esta antena, te recomiendo visitar el excelente sitio web de Steve Yates AA5TB (www.AA5TB.com). Por mi parte, haré sólo una breve descripción teórica, pues me enfocaré en la construcción de esta EFHW para 10/11, 20 y 40 metros, y en mostrar los resultados obtenidos. Los detalles constructivos están basados en el artículo publicado por PA3HHO (https://pa3hho.wordpress.com/end-fed-antennes/multiany-band-end-fed-english/). Mi idea es reproducir este trabajo y contar mi experiencia. En caso de surgir alguna mejora posible, también la comentaré.

¿En qué consiste la antena EFHW (Antena Multibanda de Media Onda Alimentada en un Extremo)?

Es un dipolo de media onda, pero en vez de conectarse la línea de bajada en el centro, se conecta en un extremo (ver Fig. 1). A mi parecer, la gran gracia de esta antena es que podemos utilizar el mismo hilo radiante para varias bandas de frecuencias armónicas, puesto que un hilo conductor de media onda a la frecuencia F, resonará en onda completa completa a 2*F, y en 3/2 de onda a 3*F, y así sucesivamente, siendo el punto de alimentación (en un extremo) siempre de impedancia muy elevada. Por ello, podemos construir antenas mutibanda utilizando un único hilo radiante, lo que hace más facil su instalación y uso como antena portable (por ejemplo, en salidas a acampar).

Al alimentarse en un extremo, como se mencionó anteriormente, la impedancia en el punto de alimentación es altísima (de 2000 a 3000 Ohmios), y por lo mismo requiere un adaptador de impedancias si se quiere conectar a la línea de 50 Ohmios. Típicamente, se usa un transformador de banda ancha con núcleo de ferrita toroidal o binocular, como veremos más adelante.

Fig.1. Comparación entre dipolo de media onda alimentado en el centro, y dipolo alimentado en un extremo. En amarillo, forma aproximada de distribución de la corriente. Notar que es máxima en el centro, lo que explica el hecho que también la impedancia es mínima; mientras que el el extremo la corriente es mínima (y máximo el voltaje), definiendo una alta impedancia.

Si se tiene una alta impedancia en el punto de alimentación, observaremos que la tensión de RF durante TX se eleva a varios kV si utilizamos potencia considerable, lo que hace críticas las características constructivas del módulo adaptador de impedancia. Por otro lado, habitualmente se ocupa el recubrimiento exterior (malla) del cable coaxial de bajada de antena como contrapeso (o contra-antena), lo que hace que este se comporte como parte del sistema radiante y por lo mismo se generan corrientes en modo común que eventualmente pueden afectar el rendimiento de la antena y la captación de ruido. Estas corrientes de modo común se pueden reducir drásticamente mediante el uso de un filtro de modo común (o balún de corriente, o choque de RF), el que debe ser instalado previo al ingreso de la línea coaxial al cuarto de radio. Así evitaremos meter RF en nuestros equipos cuando estemos en TX, y a la vez reduciremos la captación de ruido por parte de la línea coaxial en RX.

Para la adaptación de impedancias, la razón de transformación más utilizada es 1:8, donde en el lado de baja impedancia tenemos la línea de 50 Ohmios y en el lado de alta se coloca el hilo radiante de longitud eléctrica equivalente a media longitud de onda de la señal radiada (o recibida). Con esta razón de transformación tenemos mayor independencia de la R.O.E. (SWR) respecto del largo de la contra-antena (o contrapeso de la antena), siempre y cuando este sea superior al 10% de la longitud de onda de operación de la antena (ver sitio de AA5TB). Por lo mismo, si se trata de antenas multibanda, podemos escoger una longitud de contra-antena entre el 10% y 50% de la correspondiente a la frecuencia más baja de operación (en nuestro caso, banda de 40 metros).

Construyamos nuestra EFHW.

El diseño para las bandas de 40, 20 y 10 metros es el mostrado en la siguiente figura:

Fig.2. Esquema eléctrico de una antena EFHW de 3 bandas. N = 2 y M = 16, sobre núcleo toroidal de ferrita FT140-43. C = 150 pF/ 500V cerámico. Se utiliza el cable coaxial de bajada como contra-antena.

En 40 metros, el hilo se comporta como un brazo de media longitud de onda, recortado gracias a la presencia del inductor L, en nuestro caso de 34 uH. De este modo, logramos acortar el largo total de la antena, o sea D1 + D2 es menor que media longitud de onda en 40 metros, lo que a su vez reduce el ancho de banda y rendimiento en 40 metros.

Para las bandas de 20 y 10 metros, el inductor L se comporta como un choque de RF, es decir, como una impedancia tan elevada que prácticamente no permite el paso de corriente de RF hacia el tramo final de la antena (D2). De este modo, para 20 y 10 metros el largo total de la antena es D1, donde en el caso de 20 metros corresponde a media longitud de onda, mientras que en 10 metros a una longitud de onda completa, donde ambas maximizan su impedancia en el extremo. 

Fig. 3 Antena EFHW para las bandas de 40, 20 y 10/11 metros.
Fig. 4 Adaptador de impedancias antena EFHW para 40, 20 y 10 metros.

El transformador se ha hecho en base al toroide FT140-43 (Ver http://toroids.info/FT140-43.php), formado por 2 espiras bifilares + 14 espiras, con hilo de cobre esmaltado tipo 18 AWG. El secundario lo he enrollado en partes opuestas del toroide, con el objetivo de reducir capacitancias parásitas entre ambos extremos del bobinado. El toroide está recubierto de cinta dieléctrica para proteger la aislación del hilo que conforma el adaptador de impedancias, lo que no significa un problema pues en QRP no tendremos calentamiento del núcleo toroidal.

Para acortar la longitud de la antena de 40 metros, y también para aislar el último tramo de la antena (D2) en la operación de las bandas de 20 y 10 metros, se utiliza un inductor de L = 34 uH. Consiste en 65 vueltas de hilo 18 AWG sobre una tubo de PVC de 1 pulgada de diámetro.

Con el objetivo de obtener una satisfactoria operación del adaptador de impedancias en la banda de 10 metros, he colocado un capacitor de 150 pF en paralelo con el lado de baja impedancia del transformador (probando desde 50pF hasta 200pF, es el que mejor resultado ha dado). Debe soportar por lo menos 500V, como es en este caso, lo que es suficiente para operar equipos con potencias QRP (5W P.E.P o inferior), pues cuando se eleva la R.O.E. esta tensión puede llegar a máximos bastante elevados.

Luego de varias pruebas, las longitudes óptimas para D1 y D2 son:

D1 = 10.1 [m]

D2 = 1.6 [m]

Ajustadas a mi instalación en particular. Dependiendo del valor exacto de la inductancia, de la disposición del hilo radiante (horizontal, vertical o «v» invertida), del entorno (influencia de estructuras conductoras cercanas), tipo de suelo, trazado de la línea de bajada y postura de balún para filtrar corrientes en modo común, estas longitudes pueden variar.  

Ensayos preliminares me han mostrado resultados interesantes… QSOs en la banda de 40 metros a más de 500 km de distancia, y en 10 metros a más de 2.000 km!, con sólo 5 W p.e.p. Una maravilla. Es ideal para salidas a terreno, pues su instalación es muy sencilla. Faltaría medir su eficiencia, especialmente el efecto del transformador toroidal, pero independiente de eso, lo fácil de su construcción, instalación, operación multibanda y experiencia de uso la hacen una opción interesante.

ACTUALIZACIÓN 06/10/2020: llegaron mis núcleos toroidales FT240-43!! pronto un nuevo artículo referente a esta antena…

Aunque… por el momento, un adelanto en la Fig. 5:

Fig.5 Construcción de un nuevo adaptador de impedancias, basado en el núcleo toroidal de ferrita FT240-43.

Luego de revisar experiencia práctica de entusiastas experimentadores, he considerado en este nuevo diseño el uso de 2 núcleos toroidales apilados de tipo FT240-43. Según algunos autores, la eficiencia de este transformador es superior al 80% en toda la banda de HF, cuando se le utiliza con una relación de transformación de 49:1, un capacitor de 100 pF en paralelo con la entrada y una carga resistiva pura de 2450 Ohmios. Mi idea es probar este diseño de adaptador de impedancias para utilizar esta antena con más potencia  (los 100 Wpep que entrega mi FT-450D) y extender el uso a la banda de 80 metros.

Más información en este link (antena multibanda para 80/40/20/10 metros).

Antena muy simple para 10 y 11 metros (CB)

(Simple antenna for 10 and 11 meters)

En este post quiero compartir el diseño de una antena base muy simple, económica y efectiva para las bandas de 11 y 10 metros, polarización vertical, la que construí como solución temporal a mi necesidad de radio en estas bandas. Es una muy buena alternativa para quienes tenemos poco espacio en casa, donde no es posible instalar antenas con radiales hacia los costados o antenas horizontales. Es la llamada “Antena T2LT”.

Básicamente, es un dipolo polarizado verticalmente. El irradiante superior lo hice con una línea bifilar de 300 ohmios cortocircuitada en ambos extremos, con el objetivo de simular un único conductor de mayor diámetro (lo que influye en el ancho de banda de la antena). Se conecta sólo al conductor interno de la línea coaxial. Como brazo inferior de la antena se utiliza la malla exterior de la línea coaxial de bajada, la que termina en un choque de RF (balún de corriente 1:1 o filtro de modo común), hecho de 5 espiras bien apretadas con el mismo cable coaxial de bajada (RG-58) sobre una forma de 11 cm de diámetro.

Esquema de antena T2LT.

El choque de RF hace las veces de aislación entre el extremo inferior de la antena y la línea coaxial de bajada. Esta cantidad de espiras juntas maximiza la impedancia equivalente en modo común en este punto, es decir, la inductancia de las espiras y la capacitancia entre espiras forman un circuito resonante paralelo cuya impedancia es muy elevada en torno a los 27 MHz. Lo he comprobado, pues la línea coaxial de bajada no presenta corrientes en modo común evidentes, lo que mejora el rendimiento y a la vez reduce la captación de ruidos en su recorrido hacia el transceptor.

Las medida del irradiante y del tramo coaxial que funciona como brazo inferior del dipolo que utilizo es L = 2.58 mts c/u, lo que me entrega excelente R.O.E. en todos los canales CB y por debajo de 1.5 hasta aproximadamente 27.6 MHz, facilitando su uso en los canales aéreos. El montaje lo hice sobre un mástil de fibra de vidrio, pues es muy buen aislante y presenta baja pérdida como dieléctrico a la frecuencia de operación. Pueden probar con un soporte diferente (más barato) incluso de madera, donde recomendaría separarla unos centímetros de los conductores que conforman el dipolo.

Implementación de mi antena T2LT para 10 y 11 metros.

Noto que cuando la humedad relativa del aire está elevada (sobre 80%, cuando llueve), la frecuencia de resonancia de la antena disminuye, por lo cual se eleva la R.O.E. en los canales aéreos. Es cuestión de jugar con la longitud de los brazos del dipolo hasta obtener el que mejor se acomode a la realidad de cada usuario e instalación en particular.

Saludos!! (o 73´s, como se dice en radio)

Emerson Sebastián